检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王健 丁炜[1] 魏子栋[1] Jian Wang;Wei Ding;Zidong Wei(Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization,School of Chemistry and Chemical Engineering,Chongqing University,Chongqing 400044,China)
机构地区:[1]重庆大学化学化工学院,清洁能源与资源利用化学过程重庆市重点实验室,重庆400044
出 处:《物理化学学报》2021年第9期71-93,共23页Acta Physico-Chimica Sinica
基 金:国家自然科学基金(22022502,21776024);重庆市青年拔尖(02200011130003)资助项目。
摘 要:质子交换膜燃料电池(PEMFCs)作为一种清洁、高效的能源转换装置,被认为是未来能源转换的重要技术之一,是取代现有汽车内燃机的重要途径之一。目前,PEMFCs广泛使用铂基电催化剂,电堆组装的技术水平已降低到0.2 g·kW^(−1)。然而,按照汽车行业铂全球用量(约90 t铂,生产9500万辆),大规模应用需要将系统铂用量将至0.01 g·kW^(−1),挑战巨大。实现铂利用率数量级的提升,当前研究主要集中在开发高活性、高利用率、高稳定的、抗溺水的新型铂基催化剂;开发高透氧率、疏水性新型离聚物,制备超薄质子膜;合理设计高传质性能、高利用率的催化层。本文主要针对上述的问题进行了综述,分析了其催化活性增强的机理,讨论了膜电极组成设计和影响因素。Proton exchange membrane fuel cells(PEMFCs)generate electricity from hydrogen,powering a range of applications while emitting nothing but water.Therefore,PEMFCs are regarded as an environmentally friendly alternative to internal combustion engines for the future.Nevertheless,the high cost and scarcity of platinum(Pt)sources prevent the widespread adoption of fuel cells.With the development of fuel cell manufacturing technology,current Pt utilization has increased to a relatively high level of 0.2 g·kW^(−1) in PEMFCs.However,according to the PGM market report from Johnson Matthey(2020),current Pt utilization in fuel cells is still too low to meet the need for its large-scale application in the automotive industry,unless the Pt utilization can be further reduced to an ultra-low level(0.01 g·kW^(−1)).Therefore,higher Pt mass activity and higher Pt utilization must be realized in membrane electrode assemblies(MEA)to achieve ultra-low Pt loadings and a reduced Pt usage.Many key variables affect the performance of MEA,such as the activity of electrocatalysts,conductivity and distribution of ionomers,gas diffusion in carbon papers,and the thickness of the proton exchange membrane.For example,a wide variety of highly promising catalysts have been developed,such as shape-controlled Pt nanocrystals,Pt alloy/dealloys,core-shells,the synergetic effect of active supports,single atom/single-atom layer catalysts for improving the utilization of Pt,and anti-poisoning catalysts.However,the super-high activity of a Pt catalyst is elusive in a real fuel cell because of the lack of a fundamental understanding of the reaction interface structure and mass transfer properties in real cells.For instance,the recently developed Pt-Ni nanoframes that exhibited an extremely high mass activity of 5.7 A·mg^(−1) for the oxygen reduction reaction(ORR)in a liquid half-cell only showed about one-tenth the activity in a real fuel cell(0.76 A·mg^(−1) Pt at 0.90 V).To achieve widespread adoption of Pt in fuel cells,we urgently need to ex
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30