检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王俊洋 王斌 李德望 徐忠胜 苗燕熠 杨志 金海燕 陈建芳 Wang Junyang;Wang Bin;Li Dewang;Xu Zhongsheng;Miao Yanyi;Yang Zhi;Jin Haiyan;Chen Jianfang(Second Institute of Oceanography,Ministry of Natural Resources,Hangzhou 310012,China;Key Laboratory of Marine Ecosystem Dynamics,Ministry of Natural Resources,Hangzhou 310012,China;State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,Ministry of Natural Resources,Hangzhou 310012,China;Ocean College,Zhejiang University,Zhoushan 316021,China;School of Oceanography,Shanghai Jiao Tong University,Shanghai 200030,China)
机构地区:[1]自然资源部第二海洋研究所,浙江杭州310012 [2]自然资源部海洋生态系统动力学重点实验室,浙江杭州310012 [3]自然资源部第二海洋研究所卫星海洋环境动力学国家重点实验室,浙江杭州310012 [4]浙江大学海洋学院,浙江舟山316021 [5]上海交通大学海洋学院,上海200030
出 处:《海洋学报》2021年第9期21-32,共12页
基 金:中央科研院所基本业务费专项资金项目(LORCE计划);国家自然科学基金(U1709201,41706120,41806095);浙江省自然科学基金(LQ17D060006);“全球变化与海气相互作用”专项(Ⅱ期)-长江口缺氧酸化预警监测项目
摘 要:杭州湾作为典型的高浑浊度海湾,对其水体碳酸盐体系分布特征的研究相对较少。本文基于两个夏季航次(2018年和2019年)获取的调查资料,阐述夏季杭州湾水体中碳酸盐体系参数的空间分布特征,并进一步分析影响溶解无机碳偏离保守混合作用的主要过程及相对贡献。数据结果表明,杭州湾内表层溶解无机碳浓度与总碱度的变化范围分别为1553~1964μmol/kg和1577~2101μmol/kg,略低于长江口(1407~2110μmol/kg和1752~2274μmol/kg),溶解无机碳浓度和总碱度的空间分布受控于淡水与外海水混合的影响,在潮汐作用下,总体呈现出湾内低,向湾外逐渐升高的趋势。影响表层溶解无机碳非保守混合分布的主要过程中,海−气交换降低溶解无机碳浓度,呼吸作用增加溶解无机碳浓度,两个过程对溶解无机碳浓度变化量的贡献分别为(−42.3±11.7)%与(34.2±14.3)%,净效应呈现为相对平衡的状态。通过计算获得表层海水pCO2的平均值为799μatm(675~932μatm),海湾总体表现为大气CO2的源。此外,湾内海水碳酸盐缓冲因子的范围为12.8~23.8,对CO2的缓冲能力弱于邻近东海海水(缓冲因子平均值约为11.9),指示其与外部水体的交换可能会降低附近海域的酸化缓冲能力。相对其他河口/海湾而言,杭州湾内高浊度与强潮汐的特点使其湾内水体的碳酸盐体系分布特征具有区域特殊性。As a typical high-turbidity bay,the carbonate systems in the Hangzhou Bay are not well documented.In this paper,the spatial distributions of inorganic carbonate paramenters in the Hangzhou Bay were analyzed based on data collected from two summer surveys in 2018 and 2019.The results showed that dissolved inorganic carbon(DIC)concentration and total alkalinity(TA)in surface layer of the Hangzhou Bay ranged from 1553μmol/kg to 1964μmol/kg and from 1577μmol/kg to 2101μmol/kg,respectively,which were lower than that of the Changjiang River Estuary(1407−2110μmol/kg and 1752−2274μmol/kg).The spatial distributions of DIC concentration and TA were controlled by the mixing of fresh water and offshore sea water.They were affected by strong tide,which gradually increased DIC concentration from inner bay to outlet of the bay.Air-sea carbon exchange and biological respiration led to decrease and increase of DIC concentration,with the contributions of(−42.3±11.7)%and(34.2±14.3)%,respectively.Such two compensate processes resulted in a net balanced state.The average surface pCO2 in the Hangzhou Bay was 799μatm(675−932μatm),indicating that bay waters were source of atmospheric CO2.The revelle factor in the Hangzhou Bay varied from 12.8 to 23.8,suggesting a weaker CO2 buffering capacity than the adjacent East China Sea(the mean value was 11.9).Compared with other estuaries/gulfs,the characteristics of high turbidity and strong tides in the Hangzhou Bay made the spatial distributions of the carbonate system in the bay water had regional specificity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49