基于SRv6的信息中心网络路由选择策略研究  被引量:2

Research on routing strategy of information center network based on SRv6

在线阅读下载全文

作  者:厉瑞宣 周金和[1] LI Ruixuan;ZHOU Jinhe(School of Information and Communication Engineering,Beijing Information Science&Technology University,Beijing 100101,China)

机构地区:[1]北京信息科技大学信息与通信工程学院,北京100101

出  处:《北京信息科技大学学报(自然科学版)》2021年第4期25-31,共7页Journal of Beijing Information Science and Technology University

基  金:国家自然科学基金资助项目(61872044)。

摘  要:针对现有信息中心网络(information-centric network,ICN)路由局部最优的问题,引入SRv6源路由机制,提出基于SRv6的ICN新型网络架构;建立了基于软件定义网络(software defined network,SDN)的SRv6-ICN网络架构。针对提出的架构进一步利用无标度网络对ICN进行建模,提出基于源路由的跳数约束的K-means分簇路由算法,通过SDN收集全局兴趣请求和网络拓扑,根据请求节点偏好以及路由跳数,利用K-means算法对路由节点进行分簇;通过SRv6的源路由机制,向源节点一次性下发路由表,避免中间路由,使网络获取更佳性能。仿真结果表明,在网络中请求数量不断增加的情况下,与最短路径算法和随机路径算法相比,该算法可以减少数据包丢失,降低延迟,减少系统开销。Aiming at the problem of local optimal routing of existing information-centric network(ICN),SRv6 source routing mechanism was introduced,and a new ICN network architecture based on SRv6 was proposed.The SRv6-ICN network architecture based on software defined network(SDN)was established.For the proposed architecture,ICN was further modeled by scale-free network,and a K-means clustering routing algorithm based on hop count constraint of source routing was proposed.The global interest requests and network topology were collected through SDN,and routing nodes were clustered by K-means algorithm according to the preference of requesting nodes and routing hop count.Through the source routing mechanism of SRv6,the routing table was distributed to the source node at one time to avoid intermediate routing and make the network obtain better performance.Simulation results show that compared with the shortest path algorithm and random path algorithm,this algorithm can reduce the packet loss,delay and system overhead when the number of requests in the network is increasing.

关 键 词:SRv6 源路由 数据特征 系统开销 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象