检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈立雪 滕广青 吕晶 庹锐 Chen Lixue;Teng Guangqing;LüJing;Tuo Rui(School of Information Science and Technology,Northeast Normal University,Changchun 130117)
机构地区:[1]东北师范大学信息科学与技术学院,长春130117
出 处:《图书情报工作》2021年第16期81-89,共9页Library and Information Service
基 金:国家社会科学基金项目"基于复合数据的科技信息跨维度挖掘与推荐研究"(项目编号:19BTQ063)研究成果之一。
摘 要:[目的/意义]探索科研人员职业发展情况及其研究主题的变化规律不仅可以揭示科学生产力发展的内在机制,也有助于对科学事业的发展提供更好的政策指导与支持。[方法/过程]基于自然科学、社会科学、艺术与人文科学的代表性学科数据,对科研人员的职业高峰进行识别。在此基础上以职业高峰作为科研人员学术生涯的划分依据,采用自然语言处理中的Top2Vec主题建模方法识别研究主题,对科研人员学术生涯不同阶段所研究主题的主题相似度和主题转换概率进行分析。[结果/结论]研究结果表明,各学科科研人员总体上在经历职业高峰之后的主题转换会更加频繁;而精英学者在经历职业高峰后其研究主题则反而更加专一。[Purpose/significance]Exploring the individual career development of scientists and the transforming laws of research topics can not only reveal the internal mechanism of the development of scientific productivity,but also help provide better policy guidance and support for the development of scientific undertakings.[Method/process]Based on the representative discipline data of natural sciences,social science,art and humanities,this article identified the career peaks of scientists.The career peak was used as the basis for dividing the academic career of scientists.The Top2Vec topic modeling method in natural language processing was used to identify research topics,and the topic similarity and topic transfer probability of the research topics at different stages of the academic career of scientists were measured.[Result/conclusion]The research results show that scientists in various disciplines generally change research topics more frequently after experiencing their career peaks,while elite scholars have more specific research topics after experiencing their career peaks.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26