Micro-mechanical damage diagnosis methodologies based on machine learning and deep learning models  

在线阅读下载全文

作  者:Shahab SHAMSIRBAND Nabi MEHRI KHANSARI 

机构地区:[1]Future Technology Research Center,College of Future,Yunlin University of Science and Technology,Yunlin 64002,China [2]Faculty of Mechanical Engineering,Sahand University of Technology,Tabriz 51335-1996,Iran

出  处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2021年第8期585-608,共24页浙江大学学报(英文版)A辑(应用物理与工程)

摘  要:A loss of integrity and the effects of damage on mechanical attributes result in macro/micro-mechanical failure,especially in composite structures.As a progressive degradation of material continuity,predictions for any aspects of the initiation and propagation of damage need to be identified by a trustworthy mechanism to guarantee the safety of structures.Besides material design,structural integrity and health need to be monitored carefully.Among the most powerful methods for the detection of damage are machine learning(ML)and deep learning(DL).In this paper,we review state-of-the-art ML methods and their applications in detecting and predicting material damage,concentrating on composite materials.The more influential ML methods are identified based on their performance,and research gaps and future trends are discussed.Based on our findings,DL followed by ensemble-based techniques has the highest application and robustness in the field of damage diagnosis.

关 键 词:Damage detection Machine learning(ML) Composite structure Micro-mechanics of damage Deep learning(DL) 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TB301[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象