Sequential ensemble optimization based on general surrogate model prediction variance and its application on engine acceleration schedule design  被引量:3

在线阅读下载全文

作  者:Yifan YE Zhanxue WANG Xiaobo ZHANG 

机构地区:[1]Shannxi Key Laboratory of Internal Aerodynamic in Aero-Engine,School of Power and Energy,Northwestern Polytechnical University,Xi'an 710072,China

出  处:《Chinese Journal of Aeronautics》2021年第8期16-33,共18页中国航空学报(英文版)

基  金:the financial support of the National Natural Science Foundation of China(Nos.52076180,51876176 and 51906204);National Science and Technology Major Project,China(No.2017-I0001-0001)。

摘  要:The Efficient Global Optimization(EGO)algorithm has been widely used in the numerical design optimization of engineering systems.However,the need for an uncertainty estimator limits the selection of a surrogate model.In this paper,a Sequential Ensemble Optimization(SEO)algorithm based on the ensemble model is proposed.In the proposed algorithm,there is no limitation on the selection of an individual surrogate model.Specifically,the SEO is built based on the EGO by extending the EGO algorithm so that it can be used in combination with the ensemble model.Also,a new uncertainty estimator for any surrogate model named the General Uncertainty Estimator(GUE)is proposed.The performance of the proposed SEO algorithm is verified by the simulations using ten well-known mathematical functions with varying dimensions.The results show that the proposed SEO algorithm performs better than the traditional EGO algorithm in terms of both the final optimization results and the convergence rate.Further,the proposed algorithm is applied to the global optimization control for turbo-fan engine acceleration schedule design.

关 键 词:Cross-validation Efficient global optimization Engine acceleration schedule design Ensemble of surrogate models Gas turbine engine Optimization methods Surrogate-based optimization 

分 类 号:V57[航空宇航科学与技术—航空宇航推进理论与工程] V43

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象