WorldView-3单景影像去云处理对比研究  被引量:2

Comparative study on cloud removal of WorldView-3 single scene images

在线阅读下载全文

作  者:姜琪 代晶晶[2] 田淑芳[1] JIANG Qi;DAI Jingjing;TIAN Shufang(China University of Geosciences(Beijing),Beijing 100083,China;Key Laboratory of Mineralization and Resource Evaluation,Natural Resources Department,Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing 100037,China)

机构地区:[1]中国地质大学(北京),北京100083 [2]中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室,北京100037

出  处:《测绘科学》2021年第8期141-147,共7页Science of Surveying and Mapping

基  金:中国地质调查二级项目(DD20190173)。

摘  要:针对云雾天获取的影像对比度低、地物细节模糊,严重影响影像后期处理的问题,该文基于WorldView-3(WV-3)遥感影像,通过薄云最优化变换(HOT)与点云算法相结合、暗通道两种方法去除或削减图像中云层信息,并采用相关系数、光谱扭曲度等参数定量评价两种方法的去云效果。结果显示,HOT与点云算法结合与暗通道两种方法均能对WV-3影像中云层信息进行去除,其中后者去云结果各波段的相关系数比前者去云结果平均高出6.9%,后者的光谱扭曲度比前者平均低出1.67%。因此暗通道去云方法要优于HOT与点云算法结合的去云方法。In order to solve the problems of low contrast and blurred detail of the image acquired in cloudy and foggy days, which seriously affect the image post-processing, in this paper, based onWorldView-3(WV-3)remote sensing image, the cloud information in the image was removed or reduced by haze optimized transformation(HOT) combined with point cloud algorithm and dark channel, in addition, some parameters, such as correlation coefficient and spectral distortion, were used to quantitatively evaluate the cloud removal effect of the two methods. The results showed that both HOT and point cloud algorithm combined with dark channel could remove the cloud information in WV-3 image, in which the correlation coefficient of each band of the latter cloud removal result was 6.9% higher than the former cloud removal result, and the spectral distortion of the latter was 1.67% lower than the former on average. Therefore, dark channel cloud removal method was superior to the cloud removal method combining HOT and point cloud algorithm.

关 键 词:去云处理 HOT 点云算法 暗通道方法 定量评价 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象