检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毛炳强 孙铁良 孙凌祎 陈鹏 高畅 MAO Bing-qiang;SUN Tie-liang;SUN Ling-yi;CHEN Peng;GAO Chang(PipeChina Oil and Gas Control Center;Kunlun Digital Technology Co.,Ltd.)
机构地区:[1]国家石油天然气管网集团有限公司油气调控中心 [2]昆仑数智科技有限责任公司
出 处:《化工自动化及仪表》2021年第5期446-449,456,共5页Control and Instruments in Chemical Industry
摘 要:基于视觉神经系统生理学特征,提出了一种可加速神经网络训练过程的双神经网络结构,它同时提供了一种初始化神经网络的新方法。首先,对原始数据进行小波分解,将获得的近似系数在辅助神经网络中进行训练;然后将训练得到的权值和阈值传递给主神经网络;最后,利用主神经网络对全部的输入输出信号进行训练。通过非线性函数逼近、非线性动态系统辨识和井底压力预测仿真实验,并和常规的神经网络结构进行比较,结果表明:在达到相同精度的前提下,双神经网络结构极大地缩短了训练时间。Based on physiological characteristics of human visual neural system,a new DNNA(dual neural networks architecture)was proposed to accelerate ANN training process,including a new approach to initiate weights and biases of the neural network.Firstly,having the original data decomposed with discrete wavelet transform;and then having the obtained approximation coefficients trained in an assistant neural network and the weights and thresholds obtained in training passed to the main neural network;and finally,having the main neural network employed to train all input/output signals.Through the nonlinear function approximation,nonlinear dynamic system identification,the simulation of bottom hole pressure prediction as well as the comparison with the conventional neural network structure,the results show that,the proposed DNNA can dramatically reduce the whole training time while preserving the same accuracy.
关 键 词:双神经网络 辅助神经网络 主神经网络 小波分解 训练时间
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222