检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄芳 杨红飞 朱迅[2] HUANG Fang;YANG Hongfei;ZHU Xun(Hangzhou Firestone Technology Co.,Ltd.,Hangzhou 310051,China;College of Basic Medical Sciences,Jilin University,Changchun 130021,China)
机构地区:[1]杭州费尔斯通科技有限公司,浙江杭州310051 [2]吉林大学基础医学院,吉林长春130021
出 处:《药学进展》2021年第7期502-511,共10页Progress in Pharmaceutical Sciences
摘 要:人工智能在新药研发领域中发挥着至关重要的作用。目前,自然语言处理、机器学习、深度学习、知识图谱等人工智能关键技术已广泛应用于新药研发的各个环节,全球多家人工智能企业与制药企业也开启了深度合作模式,为生物医药的发展带来了新的机遇。介绍了机器学习方法和深度学习方法在新药发现领域的应用进展及相关企业,并总结了人工智能应用于新药发现的机遇与挑战,旨在为从事人工智能+新药研发工作的科研技术人员提供思路与参考。Artificial intelligence plays an important role in drug research and development.At present,the key artificial intelligence technologies such as natural language processing,machine learning,deep learning and knowledge mapping have been widely used in the whole process of new drug research.A number of enterprises around the world in the field of artificial intelligence have started their deep cooperation with the pharmaceutical industry,creating new opportunities for the development of the biomedical field.This paper introduces the application of machine learning and deep learning methods for drug development in some enterprises,and summarizes the opportunities and challenges artificial intelligence faces in its application in new drug discovery in order to provide some insightful reference for relevant scientific researchers in their adoption of artificial intelligence in the field of new drug research and development.
关 键 词:人工智能 大数据 机器学习 深度学习 药物研发 靶点发现 药物筛选
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.148.147