检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jun Hou Tong Qin Kailiang Wu Dongbin Xiu
机构地区:[1]Department of Mathematics,The Ohio State University,Columbus,OH 43210,USA
出 处:《Communications on Applied Mathematics and Computation》2021年第2期337-356,共20页应用数学与计算数学学报(英文)
摘 要:A novel correction algorithm is proposed for multi-class classification problems with corrupted training data.The algorithm is non-intrusive,in the sense that it post-processes a trained classification model by adding a correction procedure to the model prediction.The correction procedure can be coupled with any approximators,such as logistic regression,neural networks of various architectures,etc.When the training dataset is sufficiently large,we theoretically prove(in the limiting case)and numerically show that the corrected models deliver correct classification results as if there is no corruption in the training data.For datasets of finite size,the corrected models produce significantly better recovery results,compared to the models without the correction algorithm.All of the theoretical findings in the paper are verified by our numerical examples.
关 键 词:Data corruption Deep neural network CROSS-ENTROPY Label corruption Robust loss
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195