检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗青红[1] 周斌[1] 李英仑 阿不都热西提·热合曼 LUO Qinghong;ZHOU Bin;LI Yinglun;ABUDUREXITI Reheman(Institute of Afforestation and Sand Control, Xinjiang Academy of Forestry, Urumqi 830063, China;Kashgar Fruit and Vegetable Industry Development Center, Kashgar, Xinjiang 844000, China)
机构地区:[1]新疆林业科学院造林治沙研究所,乌鲁木齐830063 [2]喀什地区瓜果蔬菜产业发展中心,新疆喀什844000
出 处:《西北植物学报》2021年第8期1371-1379,共9页Acta Botanica Boreali-Occidentalia Sinica
基 金:新疆维吾尔自治区重点研发计划项目(2019B00007);中央财政林草推广项目(新[2021]TG01);自治区林业发展补助资金项目(XJLYKJ-2020-09)。
摘 要:为探明大果沙枣树体矿质离子渗透调节机制,比较分析了盐渍化生境中1~12a生树的根、枝和叶部主要矿质阳离子的吸收、分配特征。结果表明:(1)大果沙枣树体内Ca^(2+)的积累量最高(13.79 g/kg),K^(+)次之(5.92 g/kg),Na^(+)最低(1.00 g/kg);随着树龄的增大,大果沙枣根部的Na^(+)以及枝和叶部的K^(+)、Ca^(2+)、Mg^(2+)的积累量均逐渐增大,而根部的K^(+)含量则逐渐减少;高龄段(10~12a)树体根部的Na^(+)累积量显著(P<0.05)高于中低龄(1~9a)段。(2)大果沙枣树体内K^(+)/Na^(+)最大(15.36),Mg^(2+)/Na^(+)次之(12.25),Ca^(2+)/Na^(+)最小(10.51),根和枝部的K^(+)/Na^(+)均随着树龄的增大而降低,叶部则表现相反。(3)土壤中的K^(+)和Mg^(2+)向根方向、根部K^(+)、Mg^(2+)和Ca^(2+)向枝方向以及根部的K^(+)和Mg^(2+)向叶方向的选择运移系数均随着树龄的增大呈直线上升趋势。(4)土壤中Na^(+)与根部Na^(+)含量呈极显著正相关关系(0.687,P<0.01),与叶部的K^(+)含量呈显著正相关(0.605,P<0.05);土壤中K^(+)含量与根部的Na^(+)、叶部的K^(+)分别呈显著和极显著正相关(0.544,0.676),与根部的Mg^(2+)呈显著负相关关系(-0.499)。研究发现,大果沙枣树生长过程中主要通过根部对Na^(+)的聚积作用,以及K^(+)、Mg^(2+)和Ca^(2+)在枝、叶部的吸收积累来维持植物体离子平衡,以适应盐渍土壤环境。To ascertain the mechanism of ion osmosis adjustment adapted to saline soil habitat,we studied the absorption and distribution of the main mineral cations in roots,branches and leaves of E.moorcroftii trees with the age of one to twelve.Result showed that:(1)the Ca^(2+)accumulation of the tree was the highest(13.79 g/kg),K^(+)was the next(5.92 g/kg),Na^(+)was the lowest(1.00 g/kg).With the increasing of tree age,the Na^(+)content in the roots,the K^(+),Ca^(2+)and Mg^(2+)contents in the branches and leaves had the rising trend,while K^(+)content had the opposite trend.The accumulation of Na^(+)in the root of the higher age grade trees were significantly bigger than that of the lower and middle age grade ones.(2)The K^(+)/Na^(+)of the tree was higher(15.36)than the Mg^(2+)/Na^(+)(12.25)and the Ca^(2+)/Na^(+)(10.51).The K^(+)/Na^(+)of the root and branch decreased,while it increased in the leaf.(3)With the increasing of tree age,the selective transport coefficients of K^(+)and Mg^(2+)from the soil to the root,and K^(+),Mg^(2+)and Ca^(2+)from root to branch,as well as K^(+)and Mg^(2+)from root to leaf showed the straight upward trend.(4)The Na^(+)content in the soil had an extreme significant positive correlation with the Na^(+)content in the root(0.687,P<0.01),and a significant positive correlation with the K^(+)content in the leaf(0.605 P<0.05).The K^(+)content in the soil had a significant and extreme significant positive correlation with the K^(+)in the leaf and Na^(+)in the root respectively(0.544,0.676),and had a significant negative correlation with the Mg^(2+)in the root(-0.499).E.moorcroftii maintained the ion balance and adapted to saline soil habitat through accumulating Na^(+)in the root and selective absorpting the K^(+),Mg^(2+)and Ca^(2+)in the branch and leaf.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33