基于博弈论的命名数据网络拥塞控制策略  被引量:8

Congestion control strategy in named data networking based on game theory

在线阅读下载全文

作  者:杨华[1] 孙欣伊 贾宗星[1] 舒慧生[2] YANG Hua;SUN Xinyi;JIA Zongxing;SHU Huisheng(College of Information Science and Engineering,Shanxi Agricultural University,Taigu 030801,China;College of Science,Donghua University,Shanghai 201620,China)

机构地区:[1]山西农业大学信息科学与工程学院,山西太谷030801 [2]东华大学理学院,上海201620

出  处:《东华大学学报(自然科学版)》2021年第4期49-54,61,共7页Journal of Donghua University(Natural Science)

基  金:国家自然科学基金资助项目(31671571)。

摘  要:为解决命名数据网络中的拥塞控制问题,提出一种博弈拥塞控制算法。将路由器为数据流分配带宽问题构建成单主多从的Stackelberg博弈模型,建立路由器和数据流的效用函数,证明数据流非合作动态博弈纳什均衡解的存在性,运用分布式迭代方法,获得数据流最优带宽需求量和路由器最优价格策略,通过数据包将数据流最优带宽需求量对应的速率反馈给下游路由器和请求端。基于ndnSIM平台对该算法与ICP(interest control protocol)和HR-ICP(hop-by-hop and receiver-driven interest control protocol)算法进行仿真试验,结果表明该算法能有效提升瓶颈链路利用率并保证较低的丢包率。To solve the problem of congestion control in named data networking,a congestion control algorithm based on game theory was proposed.The problem of allocating bandwidth to data streams by router was constructed as a single-leader-multi-followers game model,and the utility functions of router and data streams were designed,respectively.The existence of Nash equilibrium solution for the non-cooperative dynamic game was proved.The optimal bandwidth requirement of data streams and the optimal price strategy of the router were given in terms of the distributed iteration method.The rate corresponding to the optimal bandwidth requirement of the data stream was fed back to the downstream router and the requester through the data packet.The given algorithm was simulated with ICP(interest contral protocol)and HR-ICP(hop-by-hop and receiver-driven interest control protocol)based on ndnSIM.The comparison results show that the proposed strategy can improve the utilization of bottleneck links,and guarantee lower packet loss rate.

关 键 词:命名数据网络 拥塞控制 STACKELBERG博弈 纳什均衡 显式反馈 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象