基于序列对抗域适应的智能裁剪算法  被引量:1

Listwise Adversarial Domain Adaption Algorithm for Image Cropping

在线阅读下载全文

作  者:王皓文 桑农[1] WANG Haowen;SANG Nong(Key Laboratory on Image Information Processing and Intelligent Control of Ministry of Education,School of Artificial In telligence and Automation,Huazhong University of Science and Technology,Wuhan 430074)

机构地区:[1]华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室,武汉430074

出  处:《模式识别与人工智能》2021年第8期677-688,共12页Pattern Recognition and Artificial Intelligence

基  金:华为-华中科技大学DigiX智慧体验联合创新中心项目资助。

摘  要:智能裁剪任务一直受到缺乏训练数据的困扰,目前还局限于公开数据集中.因为实际应用场景与训练场景之间存在域迁移,文中提出基于序列对抗域适应的智能裁剪算法.首先,通过实验证实裁剪数据集GAICD和CPC之间存在域迁移问题.然后,构造由美学评分模块和对抗域适应模块组成的算法.美学评分模块用于预测图像的美学评分,并辅助提取面向裁剪任务的不变特征.对抗域适应模块实现基于对抗的域适应学习.不同裁剪数据集之间的域迁移实验及室内/室外场景之间的域迁移实验均验证文中算法的有效性.Image cropping is short of training data for its high threshold for annotation.Current research on image cropping is confined on public datasets.Grounded on domain shift between training domain and practical application scene,a listwise adversarial domain adaption algorithm for image cropping is proposed in this paper.Firstly,the domain shift between two image cropping datasets,GAICD and CPC,is proved.Then,an image cropping model composed of an aesthetic evaluation module and an adversarial domain adaptation module is constructed.Aesthetic evaluation module is employed to predict the aesthetic score of current image and assist the model to extract the invariant features for cropping task.Adversarial domain adaptation module is exploited to realize adversarial based domain adaptation learning.Domain migration experiments between different cropping datasets and between different scene domains verify the effectiveness of proposed algorithm.

关 键 词:图像智能裁剪 域迁移 域适应 对抗学习 不变特征 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象