概率语言多属性群决策方法及其在新型智慧城市市民获得感评价中的应用  被引量:5

Probabilistic linguistic multi-attribute group decision making method and its application to evaluation of citizens′sense of gain in new smart city

在线阅读下载全文

作  者:王枫 黄晓莉 万龙[2] WANG Feng;HUANG Xiaoli;WAN Long(School of Business Administration,Guangdong University of Finance&Economics,Guangzhou 510320,China;School of Information Management,Jiangxi University of Finance and Economics,Nanchang 330013,China)

机构地区:[1]广东财经大学工商管理学院,广东广州510320 [2]江西财经大学信息管理学院,江西南昌330013

出  处:《浙江大学学报(理学版)》2021年第5期557-564,572,共9页Journal of Zhejiang University(Science Edition)

基  金:教育部人文社会科学研究项目(20YJC630139);江西省教育厅科技项目(GJJ190250);广州市哲学社科规划2021年度课题(2021GZGJ49).

摘  要:针对公众参与的语言信息多属性群决策问题,研究了考虑参与者满意度的概率语言多属性群决策方法。首先,根据参与者的语言评价信息确定并规范化概率语言决策矩阵。然后,对大群体进行共识分析,由最大化参与者群体的满意度构建线性规划模型,确定参与者群组的权重;构造正、负理想方案的评价向量,构建多目标规划模型,用拉格朗日乘子法求解属性权重;定义各方案的加权贴近度,并以此对方案进行排序和优选。最后,通过新型智慧城市市民获得感评价案例验证了模型的可行性和有效性。Considering the satisfaction of participants,a probabilistic linguistic multi-attribute group decision making method is proposed.Firstly,according to the linguistic evaluation information,the probabilistic linguistic decision making matrices are established and normalized.Secondly,a linear programming model is constructed by maximizing the satisfaction of group of participants by analyzing the large-scale group consensus to obtain the weights of participant subsets.Then the evaluation vectors of the positive and negative ideal alternatives are generated.The multi-objective programming model is constructed and solved by applying the Lagrange multiplier method to obtain the weights of attributes.Finally,the weighted closeness degrees of alternatives are determined to rank the alternatives.The feasibility and effectiveness of the proposed method are verified by the evaluation example of citizens'sense of gain in the new smart city.

关 键 词:多属性群决策 概率语言术语集 群共识 市民获得感评价 

分 类 号:C934[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象