检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖佳 陈扬 包秋兰 廖雪花[2] 朱洲森[1] LIAO Jia;CHEN Yang;BAO Qiulan;LIAO Xuehua;ZHU Zhousen(College of Physics and Electronic Engineering,Sichuan Normal University,Chengdu Sichuan 610101,China;College of Computer Science,Sichuan Normal University,Chengdu Sichuan 610101,China)
机构地区:[1]四川师范大学物理与电子工程学院,成都610101 [2]四川师范大学计算机科学学院,成都610101
出 处:《计算机应用》2021年第9期2646-2651,共6页journal of Computer Applications
基 金:国家社会科学基金资助项目(20BMZ092);教育部产学合作协同育人项目(201802002036,201901075008)。
摘 要:针对当前大流量数据计算速度慢、服务器端计算压力大等问题,提出一套计算密集型大流量数据的接力计算与动态分流处理模型。首先,在分布式环境下,使用内存型数据存储技术确定计算任务的运算量与复杂等级,同时利用节点资源能力对节点进行排序;然后,动态分配任务到不同节点进行并行计算,并采用一种接力处理模式完成计算任务的分解,以有效保证高流量复杂运算任务的性能和精度要求。通过分析对比,可知在万级以上数据量的情况下,多个节点比单个节点的运行时间更短、计算速度更快;而且,将该模型应用于实际时,发现它不仅能在高并发场景下减少运行时间,而且也能节省更多计算资源。In view of the problems such as the slow computation of large flow data,the high computation pressure on the server,a set of relay computation and dynamic diversion model of computing-intensive large flow data was proposed.Firstly,in the distributed environment,the in-memory data storage technology was used to determine the computation amounts and complexity levels of the computation tasks.At the same time,the nodes were sorted by the node resource capacity,and the tasks were dynamically allocated to different nodes for parallel computing.Meanwhile,the computation tasks were decomposed by a relay processing mode,so as to guarantee the performance and accuracy requirements of high flow complex computing tasks.Through analysis and comparison,it can be seen that the running time of multiple nodes is shorter than that of the single node,and the computation speed of multiple nodes is faster than that of the single node when dealing with data volume of more than 10000 levels.At the same time,when the model is applied in practice,it can be seen that the model can not only reduce the running time in high concurrency scenarios but also save more computing resources.
关 键 词:数据分流 接力计算 计算节点 数据同步 内存型数据存储
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.47