检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋达 郭海波 朱进 李宁[1] 肖迪 张思航 SONG Da;GUO Hai-bo;ZHU Jin;LI Ning;XIAO Di;ZHANG Si-hang(China Ship Research and Development Academy,Beijing 100101,China)
机构地区:[1]中国舰船研究院,北京100101
出 处:《舰船科学技术》2021年第8期131-134,共4页Ship Science and Technology
摘 要:深度学习的兴起促进了各个电子科技行业的迅速发展,军事科学的智能应用也得到了极大的推广。舰载云环境基于单只舰船,为舰载智能应用提供算力、网络资源和存储支持。深度学习任务依赖强大的计算资源,相同的智能模型在不同的计算平台中性能可能出现巨大差异。在自主可控的大背景下,本文基于深度学习中的典型图像识别任务,对比使用国产和商用计算平台中舰载云上不同配置的虚拟机的表现性能。一方面,分析不同的虚拟机配置与表现性能的关系;另一方面,对比商用及国产平台的性能差距,为舰载云智能化的大规模应用提供理论支撑。The rise of deep learning has rapidly promoted the development of various electronic technology,and the intelligent applications of military science have also been greatly promoted.The shipborne private cloud environment is based on a single ship and provides computing resource,network resources and storage support for shipborne intelligent applications.Deep learning tasks usually rely on powerful computing resources.Even the same model on different platforms may have very different performance.In the context of independence and controllability of the technology,based on the image recognition task in deep learning,this paper compares the performance of virtual machines with different configurations on the shipborne private cloud environment in domestic and commercial platforms.On the one hand,the relationship between performance and different virtual machine configurations is analysed in this paper;on the other hand,the performance of commercial and domestic platforms is compared,which provides theoretical support for the large-scale application of shipborne cloud intelligence.
分 类 号:TP332[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80