检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张勇 胡江涛 ZHANG Yong;HU Jiangtao(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221118,Jiangsu,China)
机构地区:[1]中国矿业大学信息与控制工程学院,江苏徐州221118
出 处:《陕西师范大学学报(自然科学版)》2021年第5期71-84,共14页Journal of Shaanxi Normal University:Natural Science Edition
基 金:国家重点研发计划项目(2020YFB1708200)。
摘 要:针对同时具备动态优化与高计算代价两种特征的高代价动态优化问题,提出一种代理模型辅助的动态粒子群优化算法。为加快种群对环境变化的响应速度,给出一种基于多方向预测的种群初始化方法,用来产生多样性好且目标值优秀的初始种群;为降低代理模型的构建代价且保持其预测精度,设计一种融合目标值预测机制的代理模型更新策略。通过处理多个典型的高计算代价动态优化问题,实验结果表明,相比已有算法,所提算法可以较快地跟踪随环境变化的问题最优解。For dynamic optimization problems and expensive optimization problems,a novel surrogate-assisted particle swarm optimization(SDPSO)is proposed for expensive dynamic optimization problems.To speed up the population′s response to environmental changes,a population initialization method based on multi-directional prediction is given to generate initial populations with good diversity and excellent fitness.To reduce the construction cost of surrogate model and maintain its prediction accuracy,an update strategy of surrogate model incorporating the fitness value prediction mechanism is designed.Experimental results on several typical expensive dynamic optimization problems indicate that the proposed algorithm can track the optimal solutions changing with the environment fast.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7