混合动态连接结构的多用户多流混合预编码  被引量:1

Multi-user Multi-stream Hybrid Precoding with Hybrid Dynamic Connection Structure

在线阅读下载全文

作  者:赵峰[1] 何晓华 ZHAO Feng;HE Xiaohua(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China)

机构地区:[1]桂林电子科技大学信息与通信学院,桂林541004

出  处:《电子与信息学报》2021年第9期2647-2653,共7页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61871466)。

摘  要:混合预编码对于提高多用户毫米波大规模多输入多输出(MIMO)系统的性能至关重要,但目前基于全连接结构与子连接结构的混合预编码分别存在高能耗与性能损失严重的问题。该文综合考虑系统的频谱效率与能量效率,提出混合动态连接结构,并设计该结构下的混合预编码算法。该算法通过最大化信干噪比(SINR)的增量来设计混合动态连接结构的模拟域预编码,然后基于等效信道运用块对角化(BD)设计数字域预编码抑制多用户多流干扰。仿真实验表明,该文所提出的混合动态连接结构的频谱效率介于全连接结构与混合固定连接结构之间且获得的能量效率最高。Hybrid precoding is essential to improve the performance of multi-user millimeter-wave massive Multiple Input Multiple Output(MIMO) systems, but currently hybrid precoding based on fully connected structures and sub-connected structures have the problems of high energy consumption and severe performance loss, respectively. This paper comprehensively considers the spectral efficiency and energy efficiency of the system, proposes hybrid dynamic connection structure, and designs hybrid precoding algorithm under the structure. In this algorithm, the analog domain precoding of the hybrid dynamic connection structure is designed by maximizing the increment of Signal-to-Interference-plus-Noise Ratio(SINR), and then the digital domain precoding is designed by Block Diagonalization(BD) to suppress multi-user multi-stream interference through an equivalent channel. Simulation experiments show that the spectral efficiency of the proposed hybrid dynamic connection structure is between the spectral efficiency of the fully connected structure and the spectral efficiency of the hybrid fixed connection structure, but the highest energy efficiency is obtained.

关 键 词:大规模MIMO 毫米波 混合预编码 混合动态连接结构 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象