Nitrogen content diagnosis of apple trees canopies using hyperspectral reflectance combined with PLS variable extraction and extreme learning machine  被引量:3

在线阅读下载全文

作  者:Shaomin Chen Lihui Ma Tiantian Hu Lihua Luo Qiong He Shaowu Zhang 

机构地区:[1]Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education,Northwest A&F University,Yangling 712100,Shaanxi,China [2]Institute of Soil and Water Conservation,Northwest A&F University Yangling 712100,Shaanxi,China

出  处:《International Journal of Agricultural and Biological Engineering》2021年第3期181-188,共8页国际农业与生物工程学报(英文)

基  金:This work was supported by the National Key Research and Development Program of China(Grant No.2017YFD0201508).

摘  要:Nitrogen(N)is an important mineral element in apple production.Rapid estimation of apple tree N status is helpful for achieving precise N management.The objective of this work was to explore partial least squares(PLS)regression in dimensional reduction of spectral data and build the diagnostic model.The spectral reflectance data were collected from Fuji apple trees with 4 levels of N fertilizer treatment in the Loess Plateau in 2018 and 2019 using an ASD portable spectroradiometer,and leaf total N content was obtained at the same time.The raw spectra were pretreated using Savitzky-Golay(SG)smoothing and a combination of SG and first-order derivative(SG_FD)or second-order derivative(SG_SD).The samples were divided into a calibration dataset and a prediction dataset using SPXY.Based on 4 factors of PLS regression,including latent variables(LVs),X-loading,variable importance in projection(VIP)and regression coefficients(RC),the 6 methods(LVs,X-loading,VIP_01,VIP_02,RC_01 and RC_02)were derived and used for variable extraction,based on which PLS model and ELM model were established.The results indicated that the spectral data processed by SG_FD had the highest signal-to-noise ratio and was selected for subsequent analysis.The amounts of variables extracted by LVs,X-loading,VIP_01,VIP_02,RC_01 and RC_02 were 6,11,18,305,26 and 88,respectively.The method of extracting variables with an RC threshold based on the minimum RMSEP(RC_02)could effectively avoid the omission of effective information.The RC_02 method was recommended for related research which required accurate wavelength information as a variable.The variable extraction method based on LVs generated an ELM model with a simple structure.The prediction results showed that the ELM model outperformed the PLS model.The PLS(LVs)_ELM model was the best;R2P,RMSEP and RPD were 0.837,2.393 and 2.220,respectively.

关 键 词:partial least square variable extraction method extreme learning machine hyperspectral reflectance apple tree canopy nitrogen content 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象