检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaohui Zhang
机构地区:[1]Department of Mathematical Sciences,Zhejiang Sci-Tech University,Hangzhou,310018,China
出 处:《Science China Mathematics》2021年第9期1951-1958,共8页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.11771400 and 11911530457);Science Foundation of Zhejiang Sci-Tech University(Grant No.16062023Y)。
摘 要:for a proper subdomain D of R^(n) and for all x,y∈D defineμD(x,y)=infC_(xy)Cap(D,C_(xy)),where the infimum is taken over all curves Cxy=γ[0,1]in D withγ(0)=x andγ(1)=y,and Cap denotes the conformal capacity of condensers.The quantityμD is a metric if and only if the domain D has a boundary of positive conformal capacity.If Cap(∂D)>0,we callμD the modulus metric of D.Ferrand et al.(1991)have conjectured that isometries for the modulus metric are conformal mappings.Very recently,this conjecture has been proved for n=2 by Betsakos and Pouliasis(2019).In this paper,we prove that the conjecture is also true in higher dimensions n⩾3.
关 键 词:capacity modulus metric ISOMETRY M?bius transformation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.82.96