注水开发油田注水通道状态辨识及预测方法  被引量:5

Identification and predictions of water injectivity for water injection channels in water injection development oilfield

在线阅读下载全文

作  者:赵艳红 姜汉桥[1] 李洪奇 Zhao Yanhong;Jiang Hanqiao;Li Hongqi(College of Petroleum Engineering,China University of Petroleum,Beijing 102249,China;Beijing Key Laboratory of Petroleum Data Mining,Beijing 102249,China;College of Artificial Intellectual,China University of Petroleum,Beijing 102249,China)

机构地区:[1]中国石油大学(北京)石油工程学院,北京102249 [2]石油数据挖掘北京市重点实验室,北京102249 [3]中国石油大学(北京)人工智能学院,北京102249

出  处:《石油学报》2021年第8期1081-1090,共10页Acta Petrolei Sinica

基  金:国家自然科学基金项目“复杂油气藏核磁共振测井新理论与新方法研究”(No.41130417)资助。

摘  要:为研究注水开发油田注水通道的状态,通过将油田动、静态数据分析与机器学习算法相结合,提出了一种基于油田勘探开发动、静态数据进行注水井地层吸水状态预测的新方法。首先利用高斯混合模型完成地层吸水状态分类;然后结合动、静态数据生成机器学习样本,采用随机森林算法构建地层吸水状态预测模型,并对影响地层吸水状态的地质因素和开发因素进行重要性分析;最后将模型应用于研究工区,给出了所有井、不同层段、不同时期的吸水状态。实际应用表明,预测结果与示踪剂监测结果、吸水剖面测试结果一致,验证了该方法的可行性。该方法克服了理想条件假设、经验假设、参数假设等与实际状况不符等问题,提出了面向历史数据挖掘注水井地层吸水状态的新模式,对注水开发油田调剖堵水具有一定指导意义。This paper presents a new method for predicting water injectivity of the well formation based on dynamic and static data of oilfield exploration and development.Initially,the water injectivity was classified using Gaussian Mixture Model(GMM).On this basis,machine learning samples were generated using dynamic and static data,and further a prediction model of water injectivity was established using the random forest algorithm.Moreover,the importance of geological factors and development factors affecting water injectivity was also analyzed.Finally,the model has been applied to the study area,providing the water injectivity of all wells in different sections and different periods.The predicted results are consistent with the tracer monitoring results and the water absorption profile test results,thus verifying the feasibility of the method proposed in this study.The method overcomes the disadvantages of traditional methods,such as the hypotheses of ideal conditions,experience and parameters,and explores the water injectivity by historical data mining.It has an important guiding significance for profile control and water plugging in water injection development oilfield.

关 键 词:大孔道 地层吸水状态预测 高斯混合模型 随机森林 样本均衡化 

分 类 号:TE312[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象