检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bin Chen Jue Hou Jia Tian 陈斌;侯爵;田佳(School of Physics,Peking University,No.5 Yiheyuan Rd,Beijing 100871,China;Center for High Energy Physics,Peking University,No.5 Yiheyuan Rd,Beijing 100871,China;Peng Huanwu Center for Fundamental Theory,Hefei 230026,China;Kavli Institute for Theoretical Sciences(KITS),University of Chinese Academy of Science,Beijing 100190,China)
机构地区:[1]School of Physics,Peking University,No.5 Yiheyuan Rd,Beijing 100871,China [2]Center for High Energy Physics,Peking University,No.5 Yiheyuan Rd,Beijing 100871,China [3]Peng Huanwu Center for Fundamental Theory,Hefei 230026,China [4]Kavli Institute for Theoretical Sciences(KITS),University of Chinese Academy of Science,Beijing 100190,China
出 处:《Chinese Physics C》2021年第9期125-135,共11页中国物理C(英文版)
基 金:Supported by the National Natural Science Foundation of China(NSFC)(11735001);supported by the UCAS program of special research associate and by the internal funds of the KITS。
摘 要:In this work,we attempt to construct the Lax connections of TT-deformed integrable field theories in two different ways.With reasonable assumptions,we make an ansatz and find the Lax pairs in the TT-deformed affine Toda theories and the principal chiral model by solving the Lax equations directly.This method is straightforward,but it may be difficult to apply for general models.We then make use of a dynamic coordinate transformation to read the Lax connection in the deformed theory from the undeformed one.We find that once the inverse of the transformation is available,the Lax connection can be read easily.We show the construction explicitly for a few classes of scalar models and find consistency with those determined using the first method.
关 键 词:integrable field theory Latex connection TT deformation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38