检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘娜 LIU Na(College of Foreign Languages,Xianyang Normal University,Xianyang 712000,China)
机构地区:[1]咸阳师范学院外国语学院,陕西咸阳712000
出 处:《微型电脑应用》2021年第9期182-184,共3页Microcomputer Applications
摘 要:现有的英文作文辅助评分系统大多缺乏有效的跑题检测手段,为此提出并设计了一种英文作文跑题智能化检测技术,利用LDA模型获取作文的主题信息并通过Word2vec训练模型得到准确表达词义的词向量,基于二者的综合作用效果定位跑题的文档。对比实验结果表明,所提出的算法,综合评价指标F值为91.2%,具有非常好的跑题检测能力,对于英语教学能够发挥优异的辅助功能。Most of the existing English composition assistant scoring systems lack of effective means to detect off topic.Therefore,this paper proposes and designs an intelligent detection algorithm for English composition digression.LDA model is used to obtain the topic information of the composition,and the Word2vec training model is used to obtain the word vector to accurately express the word meaning.Based on the comprehensive effect of the two,the off topic document is located.The experimental results show that the comprehensive evaluation index F value of the algorithm proposed in this paper is 91.2%,which has a very outstanding ability of off topic detection,and can play an excellent auxiliary function for English teaching.
关 键 词:智能化检测 作文评分系统 LDA主题模型 Word2vec模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.78