检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yao Wang Yu Su Rui-Xue Xu Xiao Zheng YiJing Yan
出 处:《Chinese Journal of Chemical Physics》2021年第4期462-470,I0003,共10页化学物理学报(英文)
基 金:This work was supported by the Ministry of Science and Technology of China(No.2017YFA0204904 and No.2016YFA0400904);the National Natural Science Foundation of China(No.21633006),and Anhui Initiative in Quantum Information Technologies.
摘 要:In the pioneering work by R.A.Marcus,the solvation effect on electron transfer(ET)processes was investigated,giving rise to the celebrated nonadiabatic ET rate formula.In this work,on the basis of the thermodynamic solvation potentials analysis,we reexamine Marcus’formula with respect to the Rice-Ramsperger-Kassel-Marcus(RRKM)theory.Interestingly,the obtained RRKM analogue,which recovers the original Marcus’rate that is in a linear solvation scenario,is also applicable to the nonlinear solvation scenarios,where the multiple curve-crossing of solvation potentials exists.Parallelly,we revisit the corresponding Fermi’s golden rule results,with some critical comments against the RRKM analogue proposed in this work.For illustration,we consider the quadratic solvation scenarios,on the basis of physically well-supported descriptors.
关 键 词:Electron transfer Marcus’rate formula Rice-Ramsperger-Kassel-Marcus theory Nonlinear solvation Fermi’s golden rule
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7