检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宁治文 傅军[1] 常扬 NING Zhiwen;FU Jun;CHANG Yang(School of Electrical Engineering,Naval University of Engineering,Wuhan Hubei 430033,China)
机构地区:[1]海军工程大学电气工程学院,湖北武汉430033
出 处:《传感技术学报》2021年第7期944-950,共7页Chinese Journal of Sensors and Actuators
摘 要:为解决MEMS电子罗盘易受强磁干扰影响导致其航向解算失准的问题,结合两种多目标优化算法与COMSOL有限元仿真,设计了一种优化的三维补偿线圈结构。首先根据Helmholtz线圈工作原理,在COMSOL软件环境中进行3D建模,设计正交试验初步设定了各组线圈参数,并简单分析了三维线圈的磁场梯度分布特性。通过COMSOL和MATLAB联合仿真,设置了线圈优化的目标函数和约束条件,分别运用NSGA-Ⅱ与MOPSO两种算法进行求解,并确定了线圈的实际结构参数。仿真结果表明该三维线圈能满足强磁补偿需求,具有较高的补偿效率。In order to solve the problem that the MEMS electronic compass is susceptible to strong magnetic interference and causes its heading to be inaccurate, an optimized three-dimensional compensation coil structure is designed by combining two multi-objective optimization algorithms and COMSOL finite element simulation. First, according to the working principle of Helmholtz coil, we carried out 3D modeling in the COMSOL software environment, designed orthogonal experiments to preliminarily set the parameters of each group of coils, and simply analyzed the magnetic field gradient distribution characteristics of the three-dimensional coil. Through COMSOL and MATLAB co-simulation, the objective function and constraint conditions of coil optimization are given, and the two algorithms of NSGA-Ⅱ and MOPSO are used to solve the problems, and the actual structure parameters of the coil are determined. The simulation results show that the three-dimensional coil can meet the needs of strong magnetic compensation and has high compensation efficiency.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222