基于低功耗有损网络路由协议的多路由度量评估算法  被引量:3

Multi-Routing Metrics Evaluation Algorithm Based on Routing Protocol for Low-Power and Lossy Networks

在线阅读下载全文

作  者:曹亚楠 原豪 CAO Yanan;YUAN Hao(School of Electronics and Communication Engineering,Tianjin Normal University,Tianjin 300387,China;Chinese People’s Liberation Army Unit 61846,Zhuozhou Hebei 072750,China)

机构地区:[1]天津师范大学电子与通信工程学院,天津300387 [2]中国人民解放军61846部队,河北涿州072750

出  处:《传感技术学报》2021年第7期968-978,共11页Chinese Journal of Sensors and Actuators

基  金:天津师范大学博士科研项目(52XB2101)。

摘  要:针对缺乏科学合理的低功耗有损网络路由协议多路由度量评估方法,无法选择合适的下一跳,影响网络性能等问题,本文提出一种基于组合赋权法和逼近理想解排序法的多路由度量评估算法。该算法通过构建邻居节点各路由度量的初始判断矩阵,设计基于线性加权的复合目标函数,设计兼顾主客观因素的组合赋权算法确定复合目标函数中各路由度量的权重,并采用逼近理想解排序法确定下一跳节点等机制,有效地解决了上述问题。理论分析证明了该多路由度量评估算法的有效性和可靠性,仿真实验结果显示该算法在网络寿命,时延等方面均优于低功耗有损网络路由算法及其相关改进算法。For the of lack of scientific and reasonable multi-routing metrics evaluation methods used for RPL(Routing Protocol for Low-power and lossy networks, RPL),unable to select the appropriate next hop, which affects the network performance seriously, the multi-routing metrics evaluation algorithm based on combination weighting method and TOPSIS(MRM-CT)for RPL was proposed in this paper. Through MRM-CT,the initial judgment matrix of neighbors’ each routing metric was constructed, the linear weighting composite objective function was designed, the combination weighting method both considers objective and subjective factors to determine weighting factors of routing metrics in the composition objective function was designed, and the next hop could be selected according to TOPSIS,then the above problems can be effectively solved. Theoretical analysis proves the effectiveness and reliability of MRM-CT. Simulation results show that MRM-CT is superior to RPL and its related improvements in terms of network lifetime, delay, etc.

关 键 词:低功耗有损网络 路由度量 组合赋权法 逼近理想解排序法 目标函数 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象