海事适任评估中主观题自动评分技术研究  被引量:5

Automatic Scoring for Subjective Questions in Maritime Competency Assessment

在线阅读下载全文

作  者:韩辉 刘秀文 Han Hui;Liu Xiuwen(Navigation College,Dalian Maritime University,Dalian 116000,China)

机构地区:[1]大连海事大学航海学院,大连116000

出  处:《数据分析与知识发现》2021年第8期113-121,共9页Data Analysis and Knowledge Discovery

基  金:工信部(项目编号:工信部装函[2018] 473号);中央高校基本科研业务费专项基金项目(项目编号:3132019312)的研究成果之一。

摘  要:【目的】针对海事领域适任评估中主观题评分工作量大,易受阅卷人主观意向影响导致评分不客观的问题,构建一套针对海事领域的主观题自动评分系统。【方法】首先,采用依存句法分析加权TextRank算法提取关键词;其次,融合句向量、核心词、句法成分及依存结构判断学生答案和标准答案的相似度;然后,建立海事专用否定词集判断学生答案与标准答案的语义对立关系;最后,给出较为客观的评分。【结果】通过多组不同主观题进行测试,实验结果表明系统评分与人工阅卷的平均分差为0.21,偏差率为4.20%。【局限】对较长且结构复杂的语句处理效果不够理想。【结论】提出的主观题自动评分算法在海事适任评估主观题阅卷中总体效果较好。[Objective] This paper builds an automatic scoring system for subjective questions in the maritime competency assessment, aiming to reduce the heavy workload and human factors of subjective question scoring.[Methods] Firstly, we used the weighted TextRank algorithm of dependency syntax analysis to extract keywords.Then, we integrated sentence vectors, core words, syntactic components, and dependent structures to judge the similarity between student answers and the standard ones. Third, we constructed a set of special negative words for maritime affairs to judge the semantic opposition between the student’s answer and the standard answer.Finally, we gave each answer an objective score. [Results] We examined our method with multiple sets of different subjective questions, and found the average score difference between the automatic score and the manual scoring was 0.21, with a deviation rate of 4.20%. [Limitations] More research is needed to improve the processing of long and complex sentences. [Conclusions] The proposed algorithm could effectively evaluate subjective questions in the maritime competency assessment.

关 键 词:主观题自动评分 关键词提取 相似度计算 对立度判断 海事领域 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象