Logging-while-drilling formation dip interpretation based on long short-term memory  被引量:3

在线阅读下载全文

作  者:SUN Qifeng LI Na DUAN Youxiang LI Hongqiang TANG Haiquan 

机构地区:[1]College of Computer Science and Technology in China University of Petroleum,Qingdao 266580,China [2]Drilling Technology Research Institute of Shengli Petroleum Engineering Corporation Limited,Sinopec,Dongying 257000,China [3]Measurement and Control Technology Research Institute of Shengli Petroleum Engineering Corporation Limited.Dongying 257000,China

出  处:《Petroleum Exploration and Development》2021年第4期978-986,共9页石油勘探与开发(英文版)

基  金:Supported by the PetroChina Major Scientific and Technological Project(ZD2019-183-006);Fundamental Scientific Research Fund of Central Universities(20CX05017A);China National Science and Technology Major Project(2016ZX05021-001)。

摘  要:Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a method of applying artificial intelligence in the LWD data interpretation to enhance the accuracy and efficiency of real-time data processing.By examining formation response characteristics of azimuth gamma ray(GR)curve,the preliminary formation change position is detected based on wavelet transform modulus maxima(WTMM)method,then the dynamic threshold is determined,and a set of contour points describing the formation boundary is obtained.The classification recognition model based on the long short-term memory(LSTM)is designed to judge the true or false of stratum information described by the contour point set to enhance the accuracy of formation identification.Finally,relative dip angle is calculated by nonlinear least square method.Interpretation of azimuth gamma data and application of real-time data processing while drilling show that the method proposed can effectively and accurately determine the formation changes,improve the accuracy of formation dip interpretation,and meet the needs of real-time LWD geosteering.

关 键 词:logging while drilling azimuth gamma stratigraphic identification artificial intelligence long short-term memory wavelet transform 

分 类 号:TE271[石油与天然气工程—油气井工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象