检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张开颜 张伟男[1] 刘挺[1] Kaiyan ZHANG;Wei-Nan ZHANG;Ting LIU(Research Center for Social Computing and Information Retrieval,Harbin Institute of Technology,Harbin 150001,China)
机构地区:[1]哈尔滨工业大学社会计算与信息检索研究中心,哈尔滨150001
出 处:《中国科学:信息科学》2021年第8期1217-1232,共16页Scientia Sinica(Informationis)
摘 要:近年来,随着深度学习技术的广泛应用,人机对话研究取得了突破性进展.但是,目前的人机对话系统大多是在人机双方参与的假设下进行设计的,而更具挑战性的人机多方对话的研究和应用尚不成熟.本文将立足于自然语言处理领域,对近几年基于深度学习的多方对话研究进展进行综述.首先从人机对话角度出发,整理多方对话系统的关键问题和已有解决方案;然后,梳理基于多方对话的其他自然语言处理任务;之后,总结已有多方对话研究的数据集,并分析现有数据集的局限性和改进方案;最后,展望多方对话研究的未来发展趋势.In recent years, with the extensive application of deep learning technology, breakthroughs have been made in the study of human-computer dialogue. However, most of the current human-machine dialogue systems are designed under the assumption that both parties are involved, and the research and application of more challenging multi-party human-machine dialogues are not yet mature. Based on the field of natural language processing, this paper will review the research progress of multi-party dialogue based on deep learning in recent years. First, from the perspective of human-machine dialogue, we sort out the key problems and existing solutions of the multi-party dialogue system;then, we introduce other natural language processing tasks based on multi-party dialogue;afterwards, we summarize the existing multi-party dialogue research dataset and make a comparative analysis of limitations on the existing dataset;Finally, we look forward to the future development trend of multi-party dialogue research.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229