检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Partial Differential Equations》2021年第2期116-128,共13页偏微分方程(英文版)
摘 要:In this paper,we are concerned with a sharp fractional Trudinger-Moser type inequality in bounded intervals of IR under the Lorentz-Sobolev norms constraint.For any 1<q<∞andβ≤(√π)q'≡βq'q'=q/q-1,we obtain u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ieβ|u(x)|q'dx≤c0|I|),andβq is optimal in the sense that u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ieβ|u(x)|q'dx+∞),for anyβ>βq.Furthermore,when q is even,we obtain u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ih(u)eβq|u(x)|q')dx≤+∞),for any function h:[0,∞→[0,∞)with lim t→∞h(t)=∞.As for the key tools of proof,we use Green functions for fractional Laplace operators and the rearrangement of a convolution to the rearrangement of the convoluted functions.
关 键 词:Trudinger-Moser inequality Lorentz-Sobolev space bounded intervals
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.200.151