Trudinger-Moser Type Inequality Under Lorentz-Sobolev Norms Constraint  被引量:1

在线阅读下载全文

作  者:ZHU Maochun ZHENG Yifeng 

机构地区:[1]School of Mathematical Sciences,Institute of Applied System Analysis,Jiangsu University,Zhenjiang 212013,China

出  处:《Journal of Partial Differential Equations》2021年第2期116-128,共13页偏微分方程(英文版)

摘  要:In this paper,we are concerned with a sharp fractional Trudinger-Moser type inequality in bounded intervals of IR under the Lorentz-Sobolev norms constraint.For any 1<q<∞andβ≤(√π)q'≡βq'q'=q/q-1,we obtain u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ieβ|u(x)|q'dx≤c0|I|),andβq is optimal in the sense that u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ieβ|u(x)|q'dx+∞),for anyβ>βq.Furthermore,when q is even,we obtain u∈Н1/2,2(I),^sup||(-△)1/4u||2,q≤1^(∫Ih(u)eβq|u(x)|q')dx≤+∞),for any function h:[0,∞→[0,∞)with lim t→∞h(t)=∞.As for the key tools of proof,we use Green functions for fractional Laplace operators and the rearrangement of a convolution to the rearrangement of the convoluted functions.

关 键 词:Trudinger-Moser inequality Lorentz-Sobolev space bounded intervals 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象