检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苟聪 郑洪英[1] 肖迪[1] Gou Cong;Zheng Hongying;Xiao Di(College of Computer Science,Chongqing University,Chongqing 400044,China)
出 处:《计算机应用研究》2021年第9期2816-2820,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61672118)。
摘 要:针对可穿戴设备流数据可能泄露个人隐私的问题,提出了一种基于自编码器和时频变换的隐私保护数据发布方法。通过分块离散余弦变换将滑动窗口数据变换为频谱数据,再通过自编码器实现脱敏变换,最后由重构的频谱数据逆变换回滑动窗口数据。利用预训练的活动识别与身份识别分类器评估自编码器输出结果的效用性和隐私性,通过多目标损失函数与反向传播更新自编码器权重。在Motion-Sense数据集上的实验结果表明,在重构数据上活动识别的F_(1)-score由0.944降低至0.940,而身份识别的F_(1)-score由0.908降低至0.673,重构加速度数据与原数据之间的均方误差为0.27。与同类算法相比,该算法能够更好地保留数据的效用性以及提高数据的安全性。This paper proposed a privacy-preserving data publishing method based on autoencoder and time-frequency transformation to avoid privacy disclosure from the stream data of wearable devices.Firstly,this method transformed slide window data into frequency spectrum by the block discrete cosine transformation.Secondly,it desensitized frequency spectrum by autoencoder.Finally,it obtained slide window data from reconstructed frequency spectrum by the inverse block discrete cosine transformation.This paper applied pre-trained activity and identity classifiers to evaluate the privacy and utility of autoenco-der’s output,then updated the weights of network by multi-objective loss function and back propagation.The experimental results on the Motion-Sense dataset show that the F_(1)-score of activity recognition on the reconstructed data is reduced from 0.944 to 0.940,the F_(1)-score of identity recognition is reduced from 0.908 to 0.673,and the mean square error between reconstructed acceleration data and original data is 0.27.Compared with similar algorithms,this proposed algorithm can better retain the utility of data and improve data security.
关 键 词:可穿戴设备 流数据发布 效用性与隐私性 自编码器 离散余弦变换
分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171