Dual representation of expectile-based expected shortfall and its properties  

在线阅读下载全文

作  者:Mekonnen Tadese Samuel Drapeau 

机构地区:[1]School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China [2]School of Mathematical Sciences&Shanghai Advanced Institute of Finance(CAFR),Shanghai Jiao Tong University,Shanghai 200030,China

出  处:《Probability, Uncertainty and Quantitative Risk》2021年第2期99-116,共18页概率、不确定性与定量风险(英文)

基  金:This research is supported by National Science Foundation of China(Grant No.11971310,11671257);“Assessment of Risk and Uncertainty in Finance”(Grant No.AF0710020)from Shanghai Jiao Tong University.

摘  要:An expectile can be considered a generalization of a quantile.While expected shortfall is a quantile-based risk measure,we study its counterpart-the expectile-based expected shortfall-where expectile takes the place of a quantile.We provide its dual representation in terms of a Bochner integral.Among other properties,we show that it is bounded from below in terms of the convex combination of expected shortfalls,and also from above by the smallest law invariant,coherent,and comonotonic risk measures,for which we give the explicit formulation of the corresponding distortion function.As a benchmark to the industry standard expected shortfall,we further provide its comparative asymptotic behavior in terms of extreme value distributions.Based on these results,we finally explicitly compute the expectile-based expected shortfall for selected classes of distributions.

关 键 词:Expectile Expected shortfall Tail conditional expectation Dual representation Coherent risk measure 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象