Path-dependent backward stochastic Volterra integral equations with jumps,differentiability and duality principle  

在线阅读下载全文

作  者:Ludger Overbeck Jasmin A.L.Roder 

机构地区:[1]Institute of Mathematics,University of Gießen,Arndtsraße 2,35392 Gießen,Germany

出  处:《Probability, Uncertainty and Quantitative Risk》2018年第1期109-145,共37页概率、不确定性与定量风险(英文)

摘  要:We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.

关 键 词:Path-dependent backward stochastic Volterra integral equation Jump diffusion Path-differentiability Duality principle Comparison theorem Functional Ito formula Dynamic coherent risk measure 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象