Piecewise constant martingales and lazy clocks  

在线阅读下载全文

作  者:Christophe Profeta Frederic Vrins 

机构地区:[1]Universite d’Evry,France [2]Louvain Finance Center(LFIN)and Center for Operations Research and Econometrics(CORE),Voie du Roman Pays 34,1348 Louvain-la-Neuve,Belgium

出  处:《Probability, Uncertainty and Quantitative Risk》2019年第1期16-42,共27页概率、不确定性与定量风险(英文)

基  金:the Fonds de la Recherche Scientifique-FNRS under Grant J.0037.18.

摘  要:Conditional expectations(like,e.g.,discounted prices in financial applications)are martingales under an appropriate filtration and probability measure.When the information flow arrives in a punctual way,a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates.Providing a way to find and construct piecewise constant martingales evolving in a connected subset of R is the purpose of this paper.After a brief review of possible standard techniques,we propose a construction scheme based on the sampling of latent martingalesZ with lazy clocksθ.Theseθare time-change processes staying in arrears of the true time but that can synchronize at random times to the real(calendar)clock.This specific choice makes the resulting time-changed process Zt=Zθt a martingale(called a lazy martingale)without any assumption onZ,and in most cases,the lazy clockθis adapted to the filtration of the lazy martingale Z,so that sample paths of Z on[0,T]only requires sample paths ofθ,Zup to T.This would not be the case if the stochastic clockθcould be ahead of the real clock,as is typically the case using standard time-change processes.The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on(interval of)R.

关 键 词:Time-change process Last passage time MARTINGALE Bounded martingale Jump martingale SUBORDINATOR 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象