检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张建伟 李月琳[1,2] 李东东[3] Zhang Jianwei;Li Yuelin;Li Dongdong(Department of Information Resources Management,Business School,Nankai University,Tianjin,300071;Research Center for Information Behavior,Nankai University,Tianjin,300071;Business School,Sias University,He'nan,451150)
机构地区:[1]南开大学商学院信息资源管理系,天津300071 [2]南开大学信息行为科学研究中心,天津300071 [3]郑州西亚斯学院商学院,河南451150
出 处:《情报资料工作》2021年第5期76-83,共8页Information and Documentation Services
基 金:国家社会科学基金重点项目“网络用户健康信息素养及交互信息行为引导机制研究”(项目编号:17AZD036)的研究成果之一。
摘 要:[目的/意义]本研究对网络学术资源平台个性化推荐服务进行分析,为用户视角下个性化推荐的深入研究提供了现实依据,为识别和弥补学术界与工业界之间的研究鸿沟提供参考。[方法/过程]研究采用内容分析法对23个网络学术资源平台提供的个性化推荐服务进行两轮编码分析,选取个性化推荐的展示形式、推荐内容、推荐解释、推荐时间节点、推荐类型作为分析指标。[结果/结论](1)网络学术资源平台个性化推荐的展示形式可分为高亮凸显式、非差异化式、导航索引式、弹出式、提示性网页跳转式,且高亮凸显式使用最多;(2)推荐内容多为科学文献及其属性的超链接;(3)不同平台的推荐解释具有相似性,但详细程度存在差异;(4)推荐的时间节点多发生在用户提交检索词之后、浏览文献详情页之时、用户下载过程之中;(5)88.89%的平台提供的推荐类型为静态推荐。个性化推荐算法未能把用户当前的交互行为、用户对个性化推荐的需求和情境因素纳入推荐算法之中,可能是导致用户无法感受到性能优异的个性化推荐服务的重要原因。[Purpose/significance]This study analyzed the Personalized Recommendation Service(PRS)of the Online Academic Resource Platform(OARP),provides a realistic basis for the in-depth study of personalized recommendation from the user’s perspective,and provides a reference for identifying and bridging the research gap between academia and industry.[Method/process]The content analysis is used to conduct two rounds of coding analysis on the PRS provided by 23 OARP,and the display form,recommended content,recommendation explanation,recommendation time node,and recommendation type are selected as analysis indicators.[Result/conclusion](1)The display forms of personalized recommendation on the OARP can be divided into highlighting,non-differentiated,navigation index,pop-up,prompt web page jump,and highlighting are used more;(2)Recommended content is hyperlinks of scientific literature and its attributes;(3)Recommended explanations on different platforms are similar,but the level of detail is different;(4)The recommended time node mostly occurs after the user submits the search term,during to browsing the document details page,during the downloading;(5)88.89%of the recommendation types provided by the platform are static recommendations.The failure of the personalized recommendation algorithm to incorporate the user’s current interaction behavior,the demand for personalized recommendation,and the contextual factors into the recommendation algorithm is an important reason why users cannot actually feel the PRS with excellent performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.213.117