Causal constraint pruning for exact learning of Bayesian network structure  被引量:1

在线阅读下载全文

作  者:TAN Xiangyuan GAO Xiaoguang HE Chuchao WANG Zidong 

机构地区:[1]School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China [2]School of Electronics and Information Engineering,Xi’an Technological University,Xi’an 710021,China

出  处:《Journal of Systems Engineering and Electronics》2021年第4期854-872,共19页系统工程与电子技术(英文版)

基  金:supported by the National Natural Science Foundation of China(61573285).

摘  要:How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.

关 键 词:Bayesian network structure learning exact learning algorithm causal constraint 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象