检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张桂梅[1] 龙邦耀 曾接贤[1] 黄军阳 ZHANG Guimei;LONG Bangyao;ZENG Jiexian;HUANG Junyang(Institute of Computer Vision,Nanchang Hangkong University,Nanchang 330063)
机构地区:[1]南昌航空大学计算机视觉研究所,南昌330063
出 处:《模式识别与人工智能》2021年第9期809-823,共15页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61462065,61763033)资助。
摘 要:基于生成式的零样本识别方法在生成特征时受冗余信息和域偏移的影响,识别精度不佳.针对此问题,文中提出基于去冗余特征和语义关系约束的零样本属性识别方法.首先,将视觉特征映射到一个新的特征空间,通过互相关信息对视觉特征进行去冗余处理,在去除冗余视觉特征的同时保留类别的相关性,由于在识别过程中减少冗余信息的干扰,从而提高零样本识别的精度.然后,利用可见类和不可见类之间的语义关系建立知识迁移模型,并引入语义关系约束损失,约束知识迁移的过程,使生成器生成的视觉特征更能反映可见类和不可见类之间语义关系,缓解两者之间的域偏移问题.最后,引入循环一致性结构,使生成的伪特征更接近真实特征.在数据集上的实验证实文中方法提高零样本识别任务的精度,并具有较优的泛化性能.The generative zero shot recognition method is affected by redundant information and domain shifting while generating features,and thus its recognition accuracy is poor.To deal with the problem,a zero shot attribute recognition method based on de-redundant features and semantic relationship constraint is proposed.Firstly,the visual features are mapped to a new feature space,and the visual features are de-redundant via cross-correlation information.The redundant visual features are removed with the correlation of the categories preserved.The accuracy of zero shot recognition is improved due to the reduction of redundant information interference in the recognition process.Then,a knowledge transfer model is established using the semantic relationship between the seen and unseen classes,and the loss of semantic relationship is introduced to constrain the process of knowledge transfer.Consequently,the semantic relationship between the seen and unseen classes is reflected better by the visual features generated by the generator,and the problem of domain shifting between them is alleviated as well.Finally,the cycle consistency structure is introduced to make the generated pseudo-features closer to the real features.Experiments on datasets show that the proposed method improves the accuracy of zero shot recognition tasks with better generalization performance.
关 键 词:去冗余特征 语义关系约束 零样本识别 域偏移 属性识别
分 类 号:TP319.4[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15