Spectrum Sensing via Temporal Convolutional Network  被引量:7

在线阅读下载全文

作  者:Tao Ni Xiaojin Ding Yunfeng Wang Jun Shen Lifeng Jiang Gengxin Zhang 

机构地区:[1]Telecommunication and Networks National Engineering Research Center(Nanjing University of Posts and Telecommunications),Nanjing 210003,China [2]Xi’an Institute of Space Radio Techonology,Xi’an 710000,China

出  处:《China Communications》2021年第9期37-47,共11页中国通信(英文版)

基  金:the National Science Foundation of China (No.91738201, 61971440);the Jiangsu Province Basic Research Project (No.BK20192002);the China Postdoctoral Science Foundation (No.2018M632347);the Natural Science Research of Higher Education Institutions of Jiangsu Province (No.18KJB510030)。

摘  要:In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.

关 键 词:cognitive radio spectrum sensing deep learning temporal convolutional network satellite communication 

分 类 号:TN925[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象