基于动态模拟的油气集输站库生产过程安全参数智能预测  被引量:3

Intelligent Prediction of Safety Parameters in Oil and Gas Gathering andTransportation Process Based on Dynamic Simulation

在线阅读下载全文

作  者:马珍福[1] 陈鲁[1] 瞿健 田文德[2] Ma Zhenfu;Chen Lu;Qu Jian;Tian Wende(Hekou Oil Production Plant,Shengli Oilfield Branch Company of SINOPEC,Dongying 257200,China;College of Chemical Engineering,Qingdao University of Science&Technology,Qingdao 266042,China)

机构地区:[1]中国石油化工股份有限公司胜利油田分公司河口采油厂,山东东营257200 [2]青岛科技大学化工学院,山东青岛266042

出  处:《山东化工》2021年第17期166-168,172,共4页Shandong Chemical Industry

基  金:国家自然科学基金项目(21576143)。

摘  要:传统油气集输过程安全预测预警技术,由于未考虑过程信息与过程机理的结合而导致其具有一定的局限性。本文通过斯皮尔曼相关系数分析,基于动态模拟提取油气集输过程的关键机理特征变量,建立半监督的油气集输过程安全状态深度学习模型,实现对过程关键安全参数的智能预测。该方法可以提升油气集输过程安全管理水平,有效化解安全风险,减少企业损失。The traditional safety early prediction and warning technology of oil and gas gathering and transportation process has some limitations because it does not consider the combination of process information and process mechanism.In this paper,Spearman correlation coefficient analysis is used to extract key mechanism characteristic variables of oil and gas gathering and transportation process based on dynamic simulation.A semi-supervised deep learning model for safety state of oil and gas gathering and transportation process is established to realize the intelligent prediction of key safety parameters of the process.This method can improve the safety management level of oil and gas gathering and transportation process,effectively resolving safety risks and reducing the losses of enterprises.

关 键 词:油气集输 动态模拟 深度学习 安全预测 

分 类 号:TQ018[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象