检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马珍福[1] 陈鲁[1] 瞿健 田文德[2] Ma Zhenfu;Chen Lu;Qu Jian;Tian Wende(Hekou Oil Production Plant,Shengli Oilfield Branch Company of SINOPEC,Dongying 257200,China;College of Chemical Engineering,Qingdao University of Science&Technology,Qingdao 266042,China)
机构地区:[1]中国石油化工股份有限公司胜利油田分公司河口采油厂,山东东营257200 [2]青岛科技大学化工学院,山东青岛266042
出 处:《山东化工》2021年第17期166-168,172,共4页Shandong Chemical Industry
基 金:国家自然科学基金项目(21576143)。
摘 要:传统油气集输过程安全预测预警技术,由于未考虑过程信息与过程机理的结合而导致其具有一定的局限性。本文通过斯皮尔曼相关系数分析,基于动态模拟提取油气集输过程的关键机理特征变量,建立半监督的油气集输过程安全状态深度学习模型,实现对过程关键安全参数的智能预测。该方法可以提升油气集输过程安全管理水平,有效化解安全风险,减少企业损失。The traditional safety early prediction and warning technology of oil and gas gathering and transportation process has some limitations because it does not consider the combination of process information and process mechanism.In this paper,Spearman correlation coefficient analysis is used to extract key mechanism characteristic variables of oil and gas gathering and transportation process based on dynamic simulation.A semi-supervised deep learning model for safety state of oil and gas gathering and transportation process is established to realize the intelligent prediction of key safety parameters of the process.This method can improve the safety management level of oil and gas gathering and transportation process,effectively resolving safety risks and reducing the losses of enterprises.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229