Myocardial Infarction Detection and Localization with Electrocardiogram Based on Convolutional Neural Network  被引量:2

在线阅读下载全文

作  者:LIU Jikui WANG Ruxin WEN Bo LIU Zengding MIAO Fen LI Ye 

机构地区:[1]Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China [2]Shenzhen College of Advanced Technology,University of Chinese Academy of Sciences,Shenzhen 518055,China

出  处:《Chinese Journal of Electronics》2021年第5期833-842,共10页电子学报(英文版)

基  金:the the National Natural Science Foundation of China(No.61771465,No.U1801261,No.81701788);Strategic Priority CAS Project(No.XDB38040200);Shenzhen Science and Technology Program(No.JCYJ20180703145002040)。

摘  要:Electrocardiogram(ECG)is widely used in Myocardial infarction(MI)diagnosis.The automatic diagnosis of MI based on the 12-lead ECG needs to consider not only the waveform change features in multi-resolution time series,but also the spatial correlation information between the leads.To this end,this work proposed multiscale spatiotemporal feature extraction method based on Convolutional neural network(CNN)for MI automatic diagnosis.First,the 12-lead ECG is first transformed into an ECG image through wavelet decomposition and 3-dimensional space reconstruction.The MI-CNN model is then constructed to identify MI using 41368 ECG images.Finally,we develop the LL-CNN model,which is utilized only after the ECG signal is identified as an MI event by the MI-CNN model,to localize MI by employing transfer learning to overcome the limited data problem.The proposed method has achieved an accuracy of 99.51%on MI detection,and a macro-F1 of 99.14%on MI localization.Moreover,the features visualization shows that U-wave has significant diagnostic value for MI.The proposed method significantly improves the performance of MI detection and localization compared with other methods.It is promising to be used for MI monitoring and diagnosis.

关 键 词:ELECTROCARDIOGRAM Myocardial infarction Spatiotemporal information Convolutional neural network Transfer learning 

分 类 号:R540.41[医药卫生—心血管疾病] TP391.41[医药卫生—内科学] TP183[医药卫生—临床医学] R542.22[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象