Methane Adsorption Capacity Reduction Process of Water-Bearing Shale Samples and Its Influencing Factors: One Example of Silurian Longmaxi Formation Shale from the Southern Sichuan Basin in China  被引量:7

在线阅读下载全文

作  者:Zhiye Gao Shuling Xiong 

机构地区:[1]State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China [2]Unconventional Petroleum Research Institute,China University of Petroleum,Beijing 102249,China

出  处:《Journal of Earth Science》2021年第4期946-959,共14页地球科学学刊(英文版)

基  金:supported by the National Science and Technology Major Project of China(No.2017ZX05035-002);the National Natural Science Foundation of China(No.41972145);the Foundation of State Key Laboratory of Petroleum Resources and Prospecting from China University of Petroleum in Beijing(Nos.PRP/indep-3-1707,PRP/indep-3-1615)。

摘  要:Due to the existence of water content in shale reservoir,it is quite meaningful to clarify the effect of water content on the methane adsorption capacity(MAC)of shale.However,the role of spatial configuration relationship between organic matter(OM)and clay minerals in the MAC reduction process is still unclear.The Silurian Longmaxi Formation shale samples from the Southern Sichuan Basin in China were prepared at five relative humidity(RH)conditions(0%,16%,41%,76%,99%)and the methane adsorption experiments were conducted on these water-bearing shale samples to clarify the MAC reduction process considering the spatial configuration relationship between clay minerals and OM and establish the empirical model to fit the stages.Total organic carbon(TOC)content and mineral compositions were analyzed and the pore structures of these shale samples were characterized by field-emission scanning electron microscopy(FE-SEM),N2 adsorption and high-pressure mercury intrusion porosimetry(HPMIP).The results showed that the MAC reduction of clay minerals in OM occurred at different RH conditions from that of clay minerals outside OM.Furthermore,the amount of MAC reduction of shale samples prepared at the same RH condition was negatively related with clay content,which indicated the protection role of clay minerals for the MAC of water-bearing shale samples.The MAC reduction process was generally divided into three stages for siliceous and clayey shale samples.And the MAC of OM started to decline during stage(1)for calcareous shale sample mainly because water could enter OM pores more smoothly through hydrophobic pathway provided by carbonate minerals than through hydrophilic clay mineral pores.Overall,this study will contribute to improving the evaluation method of shale gas reserve.

关 键 词:Longmaxi Formation shale water content OM-clay complexes methane adsorption capacity reduction 

分 类 号:TE31[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象