Uncertainty in Projection of Climate Extremes:A Comparison of CMIP5 and CMIP6  被引量:8

在线阅读下载全文

作  者:Shaobo ZHANG Jie CHEN 

机构地区:[1]State Key Laboratory of Water Resources&Hydropower Engineering Science,Wuhan University,299 Bayi Road,Wuchang District,Wuhan 430072 [2]Hubei Provincial Key Lab of Water System Science for Sponge City Construction,Wuhan University,Wuhan 430072

出  处:《Journal of Meteorological Research》2021年第4期646-662,共17页气象学报(英文版)

基  金:Supported by the National Key Research and Development Program of China(2017YFA0603704);National Natural Science Foundation of China(51779176);China 111 Project(B18037)。

摘  要:Climate projections by global climate models(GCMs)are subject to considerable and multi-source uncertainties.This study aims to compare the uncertainty in projection of precipitation and temperature extremes between Coupled Model Intercomparison Project(CMIP)phase 5(CMIP5)and phase 6(CMIP6),using 24 GCMs forced by 3 emission scenarios in each phase of CMIP.In this study,the total uncertainty(T)of climate projections is decomposed into the greenhouse gas emission scenario uncertainty(S,mean inter-scenario variance of the signals over all the models),GCM uncertainty(M,mean inter-model variance of signals over all emission scenarios),and internal climate variability uncertainty(V,variance in noises over all models,emission scenarios,and projection lead times);namely,T=S+M+V.The results of analysis demonstrate that the magnitudes of S,M,and T present similarly increasing trends over the 21 st century.The magnitudes of S,M,V,and T in CMIP6 are 0.94-0.96,1.38-2.07,1.04-1.69,and 1.20-1.93 times as high as those in CMIP5.Both CMIP5 and CMIP6 exhibit similar spatial variation patterns of uncertainties and similar ranks of contributions from different sources of uncertainties.The uncertainty for precipitation is lower in midlatitudes and parts of the equatorial region,but higher in low latitudes and the polar region.The uncertainty for temperature is higher over land areas than oceans,and higher in the Northern Hemisphere than the Southern Hemisphere.For precipitation,T is mainly determined by M and V in the early 21 st century,by M and S at the end of the 21 st century;and the turning point will appear in the 2070 s.For temperature,T is dominated by M in the early 21 st century,and by S at the end of the 21 st century,with the turning point occuring in the 2060 s.The relative contributions of S to T in CMIP6(12.5%-14.3%for precipitation and 31.6%-36.2%for temperature)are lower than those in CMIP5(15.1%-17.5%for precipitation and 38.6%-43.8%for temperature).By contrast,the relative contributions of M in CMIP6(50.6%-59.8%fo

关 键 词:climate projection uncertainty uncertainty contribution Coupled Model Intercomparison Project(CMIP)phase 5(CMIP5)and phase 6(CMIP6) extreme precipitation and temperature 

分 类 号:P46[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象