检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:燕乔[1] 高名杨 梁明浩 王硕 YAN Qiao;GAO Mingyang;LIANG Minghao;WANG Shuo(College of Hydraulic&Environmental Engineering,China Three Gorges Univ.,Yichang 443002,China)
机构地区:[1]三峡大学水利与环境学院,湖北宜昌443002
出 处:《三峡大学学报(自然科学版)》2021年第5期1-5,共5页Journal of China Three Gorges University:Natural Sciences
基 金:国家大坝安全工程技术研究中心开放基金项目(NDSKFJJ1202)。
摘 要:针对目前常规组合模型在残差序列信息挖掘上的不足,借助小波分析、逐步回归分析和粒子群算法对运行期沉降进行分层次预测,充分提取沉降观测中的非线性和不确定性信息,即利用小波去噪对观测数据进行处理,结合逐步回归模型(SR)对沉降变形的整体趋势层进行预测,并通过粒子群-极限学习机(PSO-ELM)对观测数据中的残差层进行第二层建模预测,采用分层预测后的叠加值来反映测点的沉降预测值,据此构建小波SR-PSO-ELM模型.结合某已建工程实例对本模型效果进行验证,对比其它模型的预测结果表明,提出的组合模型有着更高的精度和更优的泛化能力,能对面板堆石坝运行期沉降变形进行有效预测.Aiming at the current shortcomings of conventional combined models in the residual sequence information mining,this paper uses wavelet analysis,stepwise regression analysis and particle swarm algorithm to predict the settlement at different levels during operation,and fully extract the nonlinear and uncertain information in the settlement observation.That is,wavelet denoising is used to process the observed data with combination of the stepwise regression model(SR)to predict the overall trend layer of settlement deformation and particle swarm-extreme learning machine algorithm to model the residual layer in the observation data.The summation after hierarchical prediction is used to reflect the settlement prediction value of the measuring point.Based on previous processes,the wavelet SR-PSO-ELM prediction model is constructed and applied to predict a rockfill dam.The prediction result is compared with other methods.The results show that the combined prediction model proposed in this paper is more accurate and robust.It can effectively predict the settlement of CFRD during operation.
关 键 词:面板堆石坝 沉降预测 小波变换 极限学习机 粒子群优化算法
分 类 号:TV698.1[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179