检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:P.Sriram Karthick Raja T.Thyagaraj
机构地区:[1]Department of Civil Engineering,Indian Institute of Technology Madras,Chennai,600036,India
出 处:《Journal of Rock Mechanics and Geotechnical Engineering》2021年第5期1193-1202,共10页岩石力学与岩土工程学报(英文版)
摘 要:The addition of cement for stabilization of expansive soils is one of the most commonly used methods.As with every calcium-based stabilizer,the time delay between the physical mixing of the stabilizer and compaction plays an important role in achieving the desired results after stabilization.However,a clear insight on the determination of optimum time delay for achieving the maximum desired compaction properties of cement-stabilized soils is yet to be established.Furthermore,the recent studies highlighted the use of sulfate to mitigate the negative effect of compaction time delay.The only drawback with the use of sulfate along with calcium-based stabilizers is the formation of ettringite,which deteriorates the stabilized soil matrix.In view of this,the present study is aimed at using the sulfate resistant cement(SRC)as a stabilizer along with the controlled addition of sulfate solutions to mitigate the negative effect of compaction time delay in stabilizing the expansive soil.To bring out the above effects,three periods of time delays(0 h,6 h and 24 h)and three sulfate concentrations of 5000 parts per million(ppm),10,000 ppm and 20,000 ppm were adopted.The experimental results showed that the delay in compaction resulted in the formation of clogs and reduction of strength of SRC-stabilized expansive soil.Upon sulfate addition to SRC-stabilized expansive soil,the formation clogs was not curtailed and resulted in the formation of ettringite clusters.These formations were captured with the help of scanning electron microscope(SEM)images and validated with electron dispersive X-ray spectroscopy(EDAX)analysis.Further,an attempt is also made to explain the mechanism of density and strength reduction with the aid of physico-chemical properties and mercury intrusion porosimetry(MIP)studies.
关 键 词:Compaction time delay Ettringite Sulfate resistant cement(SRC) Mercury intrusive porosimetry(MIP) SULFATE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.169.109