同阶交换子群个数之集为{1,3}的有限群  被引量:9

Finite Groups Whose Set of the Number of Abelian Subgroups of the Same Order Is{1,3}

在线阅读下载全文

作  者:钱焱 陈贵云[1] QIAN Yan;CHEN Guiyun(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)

机构地区:[1]西南大学数学与统计学院,重庆400715

出  处:《西南大学学报(自然科学版)》2021年第10期100-104,共5页Journal of Southwest University(Natural Science Edition)

基  金:国家自然科学基金项目(12071376).

摘  要:证明了不存在同阶交换子群个数之集为{1,2}的有限群,并且完全确定了同阶交换子群个数之集为{1,3}的有限群结构.作为推论,得到:群G的同阶交换子群个数之集为{1,3}等价于群G的同阶子群个数之集为{1,3}.It is proved in this paper that there is no finite group G satisfying the condition that the set of the number of abelian subgroups of the same order is{1,2}.Furthermore,it is determined that the structure of the finite group G whose set of the number of abelian subgroups of the same order is{1,3}.It is,hence,derived that for a group G,the set of the number of abelian subgroups of the possible order is{1,3}if and only if the set of the number of subgroups of the possible order is{1,3}.

关 键 词:同阶交换子群  群结构 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象