检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱焱 陈贵云[1] QIAN Yan;CHEN Guiyun(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出 处:《西南大学学报(自然科学版)》2021年第10期100-104,共5页Journal of Southwest University(Natural Science Edition)
基 金:国家自然科学基金项目(12071376).
摘 要:证明了不存在同阶交换子群个数之集为{1,2}的有限群,并且完全确定了同阶交换子群个数之集为{1,3}的有限群结构.作为推论,得到:群G的同阶交换子群个数之集为{1,3}等价于群G的同阶子群个数之集为{1,3}.It is proved in this paper that there is no finite group G satisfying the condition that the set of the number of abelian subgroups of the same order is{1,2}.Furthermore,it is determined that the structure of the finite group G whose set of the number of abelian subgroups of the same order is{1,3}.It is,hence,derived that for a group G,the set of the number of abelian subgroups of the possible order is{1,3}if and only if the set of the number of subgroups of the possible order is{1,3}.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33