检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yali Duan Linghua Kong Min Guo
机构地区:[1]School of Mathematical sciences,University of Science and Technology of China,Hefei 230026.Anhui,People's Republic of China [2]School of Mathematics and Information Science,Jiangxi Normal University,Nanchang 330022,Jiangxi,People's Republic of China [3]Department of Basic,North China College of Mechanics and Electrics,Changzhi 046000,Shanxi,People's Republic of China
出 处:《Communications in Mathematics and Statistics》2017年第1期13-35,共23页数学与统计通讯(英文)
基 金:The authors are very thankful to the reviewers for their valuable suggestions toimprove the quality of the paper.This work is supported by National Natural Science Foundation of China(Nos.11101399,11271171,11301234);the Provincial Natural Science Foundation of Jiangxi(Nos.20161ACB20006,20142BCB23009,20151BAB201012).
摘 要:In this paper,we develop a lattice Boltzmann model for a class ofone-dimensional nonlinear wave equations,including the second-order hyperbolictelegraph equation,the nonlinear Klein-Gordon equation,the damped and undampedsine-Gordon equation and double sine-Gordon equation.By choosing properly theconservation condition between the macroscopic quantity u,and the distributionfunctions and applying the Chapman-Enskog expansion,the governing equation isrecovered correctly from the lattice Boltzmann equation.Moreover,the local equilib-rium distribution function is obtained.The results of numerical examples have beencompared with the analytical solutions to confirm the good accuracy and the applica-bility of our scheme.
关 键 词:Lattice Boltzmann method Second-order hyperbolic telegraph equation Klein-Gordon equation Sine-Gordon equation Chapman-Enskog expansion
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120