On-diagonal Heat Kernel Estimates for Schrödinger Semigroups and Their Application  

在线阅读下载全文

作  者:Jian Wang 

机构地区:[1]College of Mathematics and Informatics&Fujian Key Laboratory of Mathematical Analysis and Applications,Fujian Normal University,350007 Fuzhou,People’s Republic of China

出  处:《Communications in Mathematics and Statistics》2018年第4期493-508,共16页数学与统计通讯(英文)

基  金:supported by the National Natural Science Foundation of China(Nos.11522106 and 11831014);the Fok Ying Tung Education Foundation(No.151002);the Program for Probability and Statistics:Theory and Application(No.IRTL1704);the Program for Innovative Research Team in Science and Technology in Fujian Province University(IRTSTFJ).

摘  要:We establish explicit and sharp on-diagonal heat kernel estimates for Schrödinger semigroups with unbounded potentials corresponding to a large class of symmetric jump processes.The approach is based on recent developments on the two-sided(Dirichlet)heat kernel estimates and intrinsic contractivity properties for symmetric jump processes.As a consequence,we present a more direct argument to yield asymptotic behaviors for eigenvalues of associated nonlocal operators.

关 键 词:Schrödinger semigroup (Dirichlet)heat kernel Intrinsic contractivity property Eigenvalue 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象