A Generalized Discrete Morse-Floer Theory  

在线阅读下载全文

作  者:Jürgen Jost Sylvia Yaptieu 

机构地区:[1]Max Planck Institute for Mathematics in the Sciences,Inselstrasse 22,04103 Leipzig,Germany [2]Santa Fe Institute for the Sciences of Complexity,Santa Fe,NM 87501,USA

出  处:《Communications in Mathematics and Statistics》2019年第3期225-252,共28页数学与统计通讯(英文)

基  金:funding provided by Max Planck Society;supported by a stipend from the InternationalMax Planck Research School(IMPRS)“Mathematics in the Sciences.”。

摘  要:Forman has developed a version of discrete Morse theory that can be understood in terms of arrow patterns on a(simplicial,polyhedral or cellular)complex without closed orbits,where each cell may either have no arrows,receive a single arrow from one of its facets,or conversely,send a single arrow into a cell of which it is a facet.By following arrows,one can then construct a natural Floer-type boundary operator.Here,we develop such a construction for arrow patterns where each cell may support several outgoing or incoming arrows(but not both),again in the absence of closed orbits.Our main technical achievement is the construction of a boundary operator that squares to 0 and therefore recovers the homology of the underlying complex.

关 键 词:CW complex Boundary operator Floer theory Poincarépolynomial Betti number Discrete Morsetheory Discrete Morse-Floertheory Conleytheory 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象