Bayesian Joint Semiparametric Mean–Covariance Modeling for Longitudinal Data  

在线阅读下载全文

作  者:Meimei Liu Weiping Zhang Yu Chen 

机构地区:[1]Department of Statistics and Finance,School of Management,University of Science and Technology of China,Hefei 230026,China

出  处:《Communications in Mathematics and Statistics》2019年第3期253-267,共15页数学与统计通讯(英文)

基  金:supported by the National Key Research and Development Plan(No.2016YFC0800100);the NSF of China(Nos.11671374,71631006).

摘  要:Joint parsimonious modeling the mean and covariance is important for analyzing longitudinal data,because it accounts for the efficiency of parameter estimation and easy interpretation of variability.The main potential risk is that it may lead to inefficient or biased estimators of parameters while misspecification occurs.A good alternative is the semiparametric model.In this paper,a Bayesian approach is proposed for modeling the mean and covariance simultaneously by using semiparametric models and the modified Cholesky decomposition.We use a generalized prior to avoid the knots selection while using B-spline to approximate the nonlinear part and propose a Markov Chain Monte Carlo scheme based on Metropolis–Hastings algorithm for computations.Simulation studies and real data analysis show that the proposed approach yields highly efficient estimators for the parameters and nonparametric parts in the mean,meanwhile providing parsimonious estimation for the covariance structure.

关 键 词:Cholesky decomposition Longitudinal data Bayesian semiparametric model MCMC 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象