检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Meimei Liu Weiping Zhang Yu Chen
出 处:《Communications in Mathematics and Statistics》2019年第3期253-267,共15页数学与统计通讯(英文)
基 金:supported by the National Key Research and Development Plan(No.2016YFC0800100);the NSF of China(Nos.11671374,71631006).
摘 要:Joint parsimonious modeling the mean and covariance is important for analyzing longitudinal data,because it accounts for the efficiency of parameter estimation and easy interpretation of variability.The main potential risk is that it may lead to inefficient or biased estimators of parameters while misspecification occurs.A good alternative is the semiparametric model.In this paper,a Bayesian approach is proposed for modeling the mean and covariance simultaneously by using semiparametric models and the modified Cholesky decomposition.We use a generalized prior to avoid the knots selection while using B-spline to approximate the nonlinear part and propose a Markov Chain Monte Carlo scheme based on Metropolis–Hastings algorithm for computations.Simulation studies and real data analysis show that the proposed approach yields highly efficient estimators for the parameters and nonparametric parts in the mean,meanwhile providing parsimonious estimation for the covariance structure.
关 键 词:Cholesky decomposition Longitudinal data Bayesian semiparametric model MCMC
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222