Series Representation of Jointly S˛S Distribution via Symmetric Covariations  

在线阅读下载全文

作  者:Yujia Ding Qidi Peng 

机构地区:[1]Institute of Mathematical Sciences,Claremont Graduate University,1237 N.Dartmouth Ave.,Claremont,CA 91711,USA

出  处:《Communications in Mathematics and Statistics》2021年第2期203-238,共36页数学与统计通讯(英文)

摘  要:We introduce the notion of symmetric covariation,which is a new measure of dependence between two components of a symmetricα-stable random vector,where the stability parameterαmeasures the heavy-tailedness of its distribution.Unlike covariation that exists only whenα∈(1,2],symmetric covariation is well defined for allα∈(0,2].We show that symmetric covariation can be defined using the proposed generalized fractional derivative,which has broader usages than those involved in this work.Several properties of symmetric covariation have been derived.These are either similar to or more general than those of the covariance functions in the Gaussian case.The main contribution of this framework is the representation of the characteristic function of bivariate symmetricα-stable distribution via convergent series based on a sequence of symmetric covariations.This series representation extends the one of bivariate Gaussian.

关 键 词:Symmetricα-stable random vector Symmetric covariation Generalized fractional derivative Series representation 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象